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Abstract—Organisms express their genomes in a cell-specific signals from the extracellular matrix, cell membrane, growth
manner, resulting in a variety of cellular phenotypes or phe- factors and hormones. Our current aim is to understand how
nomes. Mapping cell phenomes under a variety of experimental j4i7ing radiation alters tissue homeostasis. This is achieved
conditions is necessary in order to understand the responses - o
of organisms to stimuli. Representing such data requires an bY studyllng the eff_ect of low-dose r'adlgtlon on the cellular
integrated view of experimental and informatic protocols. The Microenvironment, inter-cell communication, and the underly-
proposed system, named BioSig, provides the foundation for ing mechanisms. In turn, this information can then be used to
cataloging cellular responses as a function of specific condition- more accura'[e|y predict more Comp|ex Ieellular bio|ogica|
ing, treatment, staining, etc. for either fixed tissue or living cell responses following exposure to different types of inhibitors.

studies. A data model has been developed to capture experimental S | th d antibodi d " ist for diff
variables and map them to image collections and their computed everal thousand anlibodies and reagents exist tor aireren-

representation. This representation is hierarchical and spans tiating a cell's specific protein components. Some antibodies
across sample tissues, cells, and organelles, which are imagec¢an additionally discriminate between functional variants of
with light microscopy. At each layer, content is represented with g protein caused by modifications such as phosphorylation
an attributed graph, which contains information about cellular status, protein conformation and complex formation. Of the

morphology, protein localization, and cellular organization in | . - L -
tissue or cell culture. The web-based multilayer informatics intracellular proteins, a large number are involved in signaling

architecture uses the data model to provide guided workflow Pathways. These pathways are currently not well understood,

access for content exploration. due to the complexity of the potential events, the potential for
Index Terms—Imaging bioinfomatics, cell segmentation, phe- multiple modifications affecting protein function, and lack of
notypic analysis information regarding where and when a protein is actively

participating in signaling. Inherent biological variability and
| INTRODUCTION genqmic instability are addit?onal factqrs that s.uppor_t the
' requirement for large population analysis. The BioSig infor-
The challenge of the post-genomic era is functional genatics approach to microscopy and quantitative image analysis
nomics, i.e., understanding how the genome is expresseth}@ been used to build a more detailed picture of the signaling
produce myriad cell phenotypes. To use genomic informatigiat occurs between cells, as a result of an exogenous stimulus
to understand the biology of complex organisms, one musiich as radiation, or as a consequence of endogenous programs
understand the dynamics of phenotype generation and mainégming to biological functions. For example, recent studies
nance. A phenotype is the result of selective expression of thgye shown that certain intracellular signaling pathways are
genome. It is an expression of the history of the cell and ifgked via the cell adhesion system [4]. Cell adhesion is how
response to the extcellular environment. In order to definey cell attaches itself via integral membrane receptors to the
cell “phenomes,” one would track the kinetics and quantitietracellular matrix. Experimentally manipulating extracellular
of multiple constituent proteins, their cellular context anghatrix receptors affects cell shape, alters thepoese of
morphological features in large populations. Such studigglls to new stimuli, and modifies multicellular organization
should also include responses to stimuli so that functiongd 5 function of time [5], [6]. Detailed analysis of these
models can be generated and tested. This paper focusesy@itidimensional responses (e.g., time andicg) can be
an imaging bioinformatic system that targets mapping cejthieved using digital microscopy but is hampered by labor
phenomics [1], [2]. intensive methods, a lack of quantitative tools, and the inability
Signaling between cells and their extracellular microefg index and access information tlugh a Web inteeice.
vironment has a profound impact on cell phenotype [3]. A significant aspect of a phenotypic study is that changes
These interactions are the fundamental prereqUiSiteS for CW'Shape, response, and Organization are heterogeneous and
trol of cell CyCle, DNA replication, tranSCfiption, metabonsmce”_speciﬁc in tissue. Given the need for a |arge Samp|e
and Signal transduction. The ultimate decision of a cell g?ze (number of images) and Comp|ex hierarchical represen-
proliferate, differentiate or die is the response to integratestion, it is necessary to maintain a detailed data model for
Research was funded by the Low Dose Radiation Program of the Li'fganaging data and information. The data model can then
Sciences Division, by the Medical Sciences Division, and by the Matipe used as a guided workflow for user-based annotation
ematical, Information, and Computational Sciences Division of the U. gn( browsing the database. It can also be used to construct
Department of Energy under Contract No. DE-AC03-76SF00098 with the . . . . .
visual interface for querying multiple targets along with
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results can then be visualized in terms of plots and collage tofatment population, mice are sacrificed at 1 hour, 4 hours,
images with sensitivity measures. Our research has three naadl 8 hours post treatment time. Tissues are then collected and
components: (1) development of a novel set of algorithnsectioned, and coverslips are prepared for antibody treatment
for capturing cellular morphology, protein expression, anahd subsequentimaging. The same experiment is then repeated
cellular organization in tissue; (2) development of a data moder genetically altered mice for comparative analysis. It is
that couples immunohistochemistry with images, instrumedtear that even such a simple study can generate a large
configuration, and multi-layered quantitative representationumber of images and annotation data to address cause and
and (3) development of a distributed imaging bioinformatiasffect in the context of biological heterogeneity. A data model
system that couples the data model with a Web-based visbak been developed to capture and link laboratory notebook
interface. information, experimental variables, images, and computed
The organization of this paper is as follows. Section @nnotations corresponding to the cellular organization and
provides a brief overview of the system architecture ardistribution.
database interaction. Section 3 outlines various component®henotyping has many degrees of freedom that should relate
of the informatic system. Section 4 provides the details of tlee particular quantitative result with (1) where a sample was
image analysis algorithms. Section 5 outlines the details obtained, (2) how it was conditioned, (3) how it was treated,
specific phenotypic studies. Section 6 concludes the paperetc. The informatic framework maintains these relations so that
different experimental results can be compared for validation,
Il. ARCHITECTURE exploratory analysis, and hypothesis testing. These relations
The system architecture is shown in Figure 1. BioSienCOd.e a mapping bgtween qua_mtitative_ results to imag_es and
xperimental annotations. The informatic system consists of

contains a flat file mechanism for stprlng raw image datﬁiree components. These include (1) data model, (2) presen-
however, compressed forms of these images, along with the

II.
computed and user defined annotations, are preserved int {'On manager, and (3) guery manager. These subsystems are

e : ’
database. The system consists of a secure Web server egtoupled for ease of development, testing, and maintenance.

constructs a view into the database through an object mo € purpose of the_data model is to provide (1) an l_mderl)_/lng
. . structure for capturing complex data types and their relation-
layer and an object oriented (OO) database for storage an ) : .
. e ships, and (2) a guided workflow for entering experimental
retrieval. BioSig uses a browser to access the Web server: . . .
variables in order to homogenize experimental protocols, e.g.,
and the database. The database supports some computationa . L
: o . . concentration, incubation time, temperature and the sequence
functionalities on feature-based representation of raw images; o . )
; . . a specific experiment. Implementation of the data model
however, all image analysis operations are performed by the _ : . ; T .
. . IS object oriented and provides bidirectional tracking and an-
computation service. . .
A ) . . notation and measured feature data. The presentation manager
BioSig currently supports five classes of operations in ordey. . . . .
. ) . . ilizes the data model to construct a flexible graphical view of
to construct the object hierarchies and provide access to {he . . . i .
: : S € database. Furthermore, it provides the display functionality
database. These include creation and validation of content : : .
. L . of a particular query in terms of graphs or images. The query
transformation, communication, security, and storage. These . ) . .
manager maps high-level user queries to the Java objects with

operational classes, with the partial exceptions of security . S e . : . i
and storage, are implemented through a component-baég% intent of simplifying and hiding detailed manipulation of
i

. . . ) o € database from the end users. Each of these components is
architecture in which processing and communication tas

S . .
are generally divided into the smallest partitions of serverSCusseOI in further detail.

resources, called servlets. Servlets can coexist on a sir:ﬁléér hfatzeggsgségitgﬁrgﬁginf aenr?wlz)lgu;gre;?gﬂ\i/tic\{lljer\gs ér:(?h
computing platform or on disparate ones. The servlet platfor 9 :

maintain computing resources such that they allow scaling" of th? database can be ‘?'ef'f‘ed by a user and his .role to
for an increased load in communication from distant We eet requirements for customization. These views are visually
)g)ressed as a directed graph and its layout is enhanced

browsers and other interoperable networked applications. T
servlets are intentionally small to allow for extensibility. Se\fﬂrough GraphViz which is an open source ATT software

eral servlets allow for creation of database hierarchies throu%rl%)JeCt'

the Web. These servlets leverage modern markup techniques

and provide validation against the schema that constrains bethData model
the structure of the data hierarchy and the individual content

The data model, shown in Figure 2, is object-oriented and
of each element.

provides navigational links from the laboratory notebook, ex-
perimental variables, images, and detailed quantitative results.
In the actual implementation, each link may have a catitjna

To understand the practical requirements of the informati more than one, and provides bidirectional tracking of infor-
system, consider the following. A typicah vivo study in- mation from any end point. The significance of this data model
cludes a number of genetically similar mice at different stagéesthat it supports both fixed tissue and living cell studies. The
of their development: virgin, pregnant, lactate, and involutiomodel has been developed through examination of steps in
In each category, mice are piioned for treatment types immunohistochemistry and sample preparation. Experiments
(e.g., implant, radiation) that they will receive. Within eaclon fixed tissue often involve several animals going through

IIl. | NFORMATICS
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Fig. 1. Distributed imaging bioinformatics architecture for phenotypic studies is layered, uses a graphic interface, and provides an objectmprde&ti
scalability.

specific treatments, radiation, implants, or a pharmaceuticalv&w into the database using this representation and the corre-
a specific dosage and time. Tissue sections are then prepamahding style sheets (XSL) for browsing and updating. XML
from an organ at a specific thickness, then stained with primaggneration is perfomed through small, efficient servlets that
and secondary antibodies labeled with a fluorochrome sueinget relevant content in the database. The stylesheet is com-
as immunofluorescence, a common tool for studying protgdiled into bytecode in order to avoid the overhead of request-
localization. The model is represented with XML, and toolBme parsing.GraphViz can also export its output in SVG,
have been developed to convert the XML representation inttich can subsequently be customized through stylesheet
Java code that is required by the object oriented databasetramsformations. The presentation manager can display the
addition to the static definition afach object, a property objectresult of a query function in either graphics or a collage of
(name-value pair) is added for extensibility. An interface hasmages. The graphics include dose-response plots and scatter
been developed to add these new properties, specify their vatiidgrams of computed features as a function of independent
types, and choose to add them to instances on a predicate baamigables. Examples of the presentation manager are shown in
or apply them globally. These value types include scalar ddtagures 3 and 4.
or links to instances or collections of existing and future data
objects at specific layers of t.he hierarch_y. C. Query manager

The model couples experimental variables (user's annota-

tion) to feature-based representation of images, which is essenl '€ query manager provides a set of predefined operators

tially an attributed graph. The nodes in this graph correspofild dynamically generated templates to assist in information
to cells, and the edges correspond to the relationships betwdiyi@lization and hypotheses testing. These operators help to
the cells. We refer to this as tissue representation which hagrﬁw pontrast bereen computed features 6}”0_' their corre-
structure and distribution. This representation is repeated R#onding annotation data, and estimate statistical measures

each cell and each organelle foilling up and down the data such as analysis of variance for sensitivity analysis. The
space. templates correspond to attributes of a set of classes in the

data model. Once these fields are selected, constraints can
, be specified, and the query results visualized through the
B. Presentation manager presentation manager. The system translates a query into a

The presentation manager supports two functions: (dava program that manipulates the database to retrieve required
guided exploration of the database and (2) visualization ofiEformation. Through its deep fetch mechanism, the object ori-
particular query operation. These functionalities are enhanceated database simplifies sensitivity analysis such as analysis
through the Web and scalable vector graphics (SVG), whidii variance since each computed feature has to be mapped
is a W3C standard for describing two-dimensional graphid® its source; e.g., animal or cell culture. An example of
SVG is an extensible XML-based format for interactive presuch a high-level operator includes correlation of a particular
sentation that incorporates images, text, shapes, and videmputed feature with respect to an independent variable; e.g.,
and allows for their precise layout and animation througtorrelate “organization” of an acinus between samples that
declarative methods. SVG greatly facilitates rich presentatibave been treated with 2-Gy levels of radiation and those that
of data-driven graphics, and its rendering is accomplishédve not been radiated at alln this case, organization is a
through viewers that work as Web browser plugins or deature that quantifies global layout of a number of epithelial
standalone applications. cells for a cell culture colony.

The schema, shown in Figure 2a, is represented in XSDThe query manager also has a unique “query by feature”
(XML schema), and the presentation manager constructsearch mechanism in which a feature is an attribute computed
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Fig. 2. Coarse representation of the BioSig data model shows close coupling between lab notebook, experimental variables, images, anddfeature-base
representation of images. Each image is summarized in terms of tissue, cell, and organelle content.
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"""" lumenal epithelial cells. During cell culture studies, a single

lumenal epithelial cell divides to form a hollow sphere known
- S as an acinus. This process often takes 10 days, when at dif-
- ferent time points, the microenvironment is disrupted to study
cell-to-cell communication. Similarly, currerih vivo studies
targets epithelial cells for normal (wild type) versus genetically
altered animals (heterozygote) so that a link between changes
in the microenvironment and intracellular signaling can be
made as a function of genetic alteration. Furthermore, neither
4 - - . cellular structures nor responses are homogeneous. As a result,
| ¥ - automatic segmentation and labeling of cells are an important
aspect of any large-scale phenotypic analysis.
The current approach to extracting subcellular regions, e.g.,

1 ! . & nuclei, is to introduce a fluorescent dye to enable imaging and
i = guantitative analysis. Segmentation is a hard problem since
4 I | i ; compartments may be overlapping (e.g., touching nuclei),
\; 8| I cells have many internal structures, signal expression for

- each cell may not be homogeneous, and images are noisy.
= Furthermore, for certain studies, cells have to be classified
_ _ _ _ with respect to their position and their response cataloged
Fig. 3. Guided workflow annotation and exploration of the database content. .. . . . .

in" time. For example, cells of interest may reside in a thin

layer that surrounds a particular type of capillary. For 2D
data, our previous approach [8] used both step and roof edges
to partition a clump of nuclei in a way that is globally
consistent. Step edges correspond to the boundaries between
nuclei and background, and roof edges correspond to the
boundary between neighboring (touching) nuclei. A unique
feature of this system was its hyperquadric representation of
eachhypothesis and the use of this representation for global
consistency. Global consistency was obtained through a cost
function that was minimized with dynamic programming.

A new approach has been developed that is simpler, more
e —— e ——— robust, and is now part of our production system [9]. This

e i | - : system is also model-based and assumes that the projection
of 3D nuclei onto a 2D image is locally quadratic. Instead of
grouping step and roof edges, we initiate from a representation
Fig. 4. Query results for a collage of images and their annotations fgpat corresponds to the zero crossing Of. the. |mage_ in the
protein colocalization studies. Composite images are automatically generd@@@l coordinate system. The zero crossing image is then
and scaled. filtered with geometrical and illumination constraints to reveal
internal structures. These internal structures are then removed

. ) . and interpolated with the corresponding boundary conditions.
from raw image data. A typical experiment can generaig,ch cjymp is then partitioned into several nuclei through a

several hundred images that correspond to tissue or cultufefcess that we call a centroid transform. The steps in the
C(falls an. arlt;:. stained with a particular ffluorr(])chromg. It Somputational protocol are shown in Figure 5a. The centroid
often of significant interest to represent a few hundred imaggs,«form essentially projects each point along the contour into

with two or three images that are representative of the image,.jized center of mass, as shown in Figure 5b. The solution

collection. In our system, this is known as the average behaviQryeqjarized to eliminate noise and other artifacts along the

operator, which utilizes indices corresponding to Comput(?.%ntour. This is shown in Figure 6. In the remainder of this

features (e.g., morphology or protein localization) to retrie‘%ction, each step of the process is described in more detail.
desired samples.

A. Elliptic regions

IV. EXTRACTION OF NUCLEI Let Iy(x,y) be the original image. In the linear (Gaus-
Quantitative analysis and change detection [7] at the cellugian) scale space, its representation at seals given by
level is an important step which can lead to a detailet{z, y;0) = G, whereG is a 2D Gaussian. The vector field
understanding of protein localization as a function of microe®f gradientVI = (I, I,)* can be classified by its Jacobian
vironment or genetic alterations. In our research, the nuclei @f the Hessian matrix:
interest reside in a thin layer that surrounds a particular type Lz Iy
: . H(z,y) =

of capillary known as a lumen. These nuclei are known as ’ Loy Iy
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subject to the boundary conditions

U
4

. I{a) = I,
FTTRACT FLLPTE PEATLAER { I(b) — Ib (4)
S — The 2D case is more complex becauselibendary is often

noisy and irregular, and it is not clear whether propagating
intensity based on distance transform will have desirable
properties. We suggest that one way to ensure continuity is
to regularize the solution by extending the 1D solution to 2D;

i.e., by minimizing the following functional:

ARSI AFTT G FWETRON TESSEFTMM |

PFENTTTON CF WECTOS FELD I

1
@) (b) - // I+ I dady (5)
2JJp

Fig. 5. Segmentation process: (&) protocol for extracting delineating touchiine Euler solution to this functional is the Laplace equation:
nuclei; and (b) evolution of centroid transform between two adjacent nuclei.

VA = Iy + Iy =0 (6)

. L ) i . Equation (6) is a two-dimensional harmonic function defined
Bright elliptic regions can then be defined as the set of POy 1) " and thus we call this method “harmonic cut.” Harmonic
satisfying the following conditions: functionals satisfy the Laplace equation and have many impor-

Iw <0 tant properties [13]. The Laplace equation is a special case of
I,y <0 (1) the Poisson equation, which has been studied extensively.

Liglyy — 12, > 0

which means that both eigenvalues of the Hessian matfix Regularized Centroid Transform

are negative, or, in other wordg/(z, y) is negative definite. At this stage of the computational process, each cell is
Similarly, a dark elliptic region can be identified by theepresented with a smooth surface correspondiregtt of its

following conditions: subcompartments. The next step of the process is to separate
nuclei that are grouped together into a clump; i.e., touching
Iy >0 @) Oone another. This is achieved using fRegularized Centroid
Lpglyy — 12, >0 Transform(RCT).

Figure 5b shows the basic idea for the RCT technique. The

This classification is deduced directly from the classic methastent is to map vectors originating from the boundary of an
for flow pattern classification [10]. In scale-space theory [113]lipse to its centroid. If these vectors can be computed, then
I.1,, — I, is referred to as the elliptic feature. Othethe entire boundary can be grouped together. This is true for
properties of this feature will be discussed in Section IV-C.both boundaries and theitterior points; i.e., grouping utilizes
not only the edges but also the regional information. The main
issue is that centroids are unknown and that there are many
centroids in the image. This is resolved by first computing a

The next step of the computational process is to remoygctor field that can then be used to partition touching objects.
small elliptic regions from the cell and interpolate their region. | ot I(z,y) be the original intensity image. At each point
This is essentially a noise removal step; however, our data 881, o), its equal-height contour is defined by
has both random noise (CCD noise) and speckle noise (internal
structures within the cell). Previous efforts in noise removal I(x,y) = I(zo, yo) (7

have been limited to filtering random noise [12]; however

structural details behave much like speckle noise and mérghanding and truncating the above equation using Taylor's

advanced techniques need to be developed. To motivate Sgfi€S: We have the following estimation:

solution, let us first consider the one-dimensional interpolation 1 5 y
problem. A one-dimensional functiof(z) with the region Leut Ly + §[IM“ + 2oyuv + Iyyv7] = 0 (8)
in the interval(a, b) can be interpolated with the average of

B. Harmonic cuts

the two endpointsif(a);’l(b). However, this approach breaksWhereu =z =20 andv =y —yo, Or in the standard form
continuity of interpolation. A better approach is to weight the }wTHw T w=0 (9)
interpolation, at each point, as a function of its distance to
the boundary condition; i.e., |gt*** (z) = (b — 2)I(a)/(b — I . _ .
a)+(x—a)I(b)/(b—a). It can be shown that this representatiomwhere H = ( P ) is the Hessian matrixg =
is equivalent to minimizing s T (@oyo)

( I ) is the gradient of intensityw = (u,v) is

Y

1,
— (l‘oy_yo)_ .
2/(1 Lydx (3) the centroid in the local coordinate system. Recall that the
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centroid of the quadratic curve defined by Eqg. (9) satisfies the
following linear constraint:

Hw+b=0 (10)

If H is non-singular, then the centroid can be determined
directly; i.e.,

w=—H""'b (11)
However this is not always true, and in general, the zero set (@) (b)
defined by
7 7 Fig. 6. Segmentation of two touching nuclei.
rr Ty _ 72 _
‘ Lo oL |T Ioalyy — 17, =0 (12)

is non-trivial, and can be further classified into two categorieg. Representation and classification

1) uniform regions that correspond to zero intensity gra- Phenotyping is often multispectral for separating structural
dient of the image with the result that there is nand functional information. In this context, a sample is tagged
information to estimate the centroid, and with fluorescent dye and imaged at 360 nm to reveal nuclear

2) elliptic features that occur in non-uniform regions.  formation (shape and organization). Phenomics is imaged at

The major limitation is that the centroids at singular poin@ther excitation frequencies; e.g., 490 nm and 570 nm. In

of the Hessian are not well defined. Since the basic form@ur system, the structure of each nucleus is represented by
lation of centroid transform is ill-posed [14], a regularize@n €llipse as well as hyperquadrics, and its protein expression
formulation is implemented. Let the centroid @t,y) be is read and processed from other channels in the region of
denoted by u(z, y), v(x, y))”, then the regularized model caninterest. The ellipse fit is based on estimating the parameters

be expressed as: of polynomial F'(a, z) = az®+bry+cy” +dz+ey+ f subject
. ) to the constraint thatac — % = 1 [15]. A 2D hyperquadric
min B(u,v) = g [[[[H - (u,0)" +b|*+ (13) [16]. [17] is a closed curve defined by
a(|[Vul[? + Vo] [*)dzdy ~
or Y lAiz+ Biy+ i =1 (17)
i=1
min B(u,v) = %ff(fmu—i—fxyv—i—fx)z—l— ] o
Loyt + Lyyv + I,)2+ (14) Sincey; > 0, (17) implies that
2 2 2 2
a(ui +uy + vg + vy )dady |Aiz 4+ Biy+Ci| <1 Vi=1,2,..,N (18)

where the first and second terms are the error of estimatiQphich corresponds to a pair of parallel line segmentsefh
the third term is the smoothness constraint, afidt 0) is the  ; These line segments define a convex polytope (for large
weight factor. The discrete Euler-Lagrange equations of thg within which the hyperquadric is constrained to lie. This
variational problem of Equation 14 can then be expressed gspresentation is valid across a broad range of shapes which
need not be symmetric. The parametdssand B; determine
Too(Lps I I Loy (I 1, I,)— . -
a(u( f;— )y_v(j— )+ Loy Uayut Ly + 1y) the slopes of the bounding lines and, along with, the
T yy ) — f . H “ »
Loy (Lot + Loy + L) + Ly (Loytt + Ly + I, )— g;]sggzce between them; determines the “squareness” of the
@ (Ver + vyy) (15) The fitting problem is as follows. Assume that data
pointsp; = (x;,y;),J = 1,2,...,m from n segments+¢ =
Sor_,m;) are given. The cost function is defined as:
D. Partitioning Vector Field

m N
1
The final step of segmentation is to compute the partition ¢ = Z W(l ~ )+ Z v (19)
of a vector field corresponding to the RCT. Consider an j=1 J\Pj i=1

autonomous system of differential equations where F(p;) = vaﬂ \Aiz; + Biy; + Gi[v, ¥ is the

de = y(x,y) gradient opergtor(\ is the regularization parameter aiigl
{ b = y(z,y) (16) s the constraint term [17]. The parametets B;, C;,~; are
a calculated by minimizinge using the Levenberg-Marquart
The computed vector field can be partitioned simply be mionlinear optimization method [18] from a suitable initial
grating each point to its local centroid, as shown in Figure 5guess [17]. Each nucleus in the image is further classified
In this context, the RCT is a model-based watershed methedth respect to the position in the lumen. Figure 7a shows an
An example of segmentation results for two overlapping nuclekample of ellipse fitting and classification of nuclei in the
is shown in Figure 6. image. Figure 7b shows that p53 expression is (1) punctate
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in the second channel, (2) heterogeneous for cells with same
classification, and (3) higher in the lumenal than stromal cells
(cells in the periphery of the image).

Classification of each cell in tissue is performed by repre-
senting cellular organization with an attributed graph, as shown
in Figure 8. The nodes and edges in this graph correspond to
cells and their relationship, respectively. The attributed graph
provides the macro information about the micro anatomy
where lumen can be localized and cell lines can be labeled
with respect to their positions with the lumen.

V. APPLICATIONS

Examples of two applications are included here to show how
BioSig can be used. The first one corresponds to cell culture
studies involving cell-cell communication and adhesion for
low radiation exposures. The second one provides the basis
for establishing a link between extra-cellular manipulation
and intra-cellular signaling for normal (wild type) versus
genetically altered animals (heterozygote).

A. Cell culture studies

To determine whether low-dose radiation promotes aberrant
extracellular matrix (ECM) interactions, we have utilized
BioSig to examine integrin and E-cadherin localization in
preneoplastic human cells surviving radiation. Integrins are a
family of epithelial receptors for the ECM, while E-cadherin
maintains normal cell-cell interactions and architecture. We
used the HMT-3522 (S1) human breast cell line cultured within
a reconstituted ECM [19]. These cells are genomicaly unstable
but phenotypically normal in that they recapitulate normal
mammary architecture in the form of a multicellular, three-
dimensional acinus [20]. These clusters express integrins in
a polarized fashion and develop an organized ECM over the
course of 7 to 10 days in culture. The intent is to examine
the consequences of exposing these cells to ionizing radiation
and a particular protein modifier, as shown in Figure 9.
Antibodies to E-cadherin, beta 1 integrin or alpha 6 integrin
were detected using a green fluorescent label while nuclei
were counterstained with a red fluorescent DNA dye. These
were imaged using confocal fluorescence microscopy and were
recorded using a 12-bit CCD camera. Cells that survived either
2 Gy or EGF showed decreased beta 1 or alpha 6 integrin
localization, respectively. However, when cells were exposed
to both radiation and EGF-, additional perturbations were
noted. The clusters were disorganized, did not polarize the
integrins at the cell surface, and failed to express E-cadherin,
indicative of a lack of structural organization. An example of ()
the untreated cells is shown in Figure 10a, which is stained for _ _ I
beta 1 inteqrin (areen) with red nuclei. Comparing this sam Flgq. 7 Segmentation and response: (g) segmentation and classification of

grin (g ) paring Pi&clei in mammary gland shows epithelial cells in yellow and stromal cells
to Figure 10b, which is a colony of cells that were irradiated red; (b) P53 expression in the second channel indicates that it is expressed
and treated with EGF-, shows that the localization of betaless in stromal cells.
integrin is perturbed, as is the organization of the colony.

The above characteristics along with the organization of
each colony were computed and stored in the database using
the techniques described in section IV. A pair of segmented
images from untreated and treated samples, their segmentation,
and organization are shown in Figure 11. These images

@)
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Fig. 10. Organization of a colony as a result of radiation and ¥ @€atment:
(a) an untreated sample maintained its symmetry along the lumen; (b) a treated
sample lost its symmetric organization.

Fig. 8. Segmentation is followed by the graph representation of the tissue
where protein colocalization, in specific cell lines, can be registered in the
spectral stack.

Expenmental Protocol

+- 2 Gy (@ (b)

+- 400 pg/ml| TGF-[! _ o -
Fig. 11. Organization of a colony as a result of low-dose radiation and

[ ] ‘ F ﬁ 0 ﬁ EGF- treatment indicates lack of symmetry around the lumen. Nuclei are

segmented, represented with hyperquadrics, and symmetry is measured by
fitting an ellipse; (a) an untreated sample maintains symmetry along the lumen;

a , . & % " and (b) a treated sample loses its symmetric organization.
{

' Treatrmem Days EzF- F.ss:;.‘:-j

both are induced by a variety of damage and specifically
ionizing radiation, and both are rapidly activated and exist in
latent forms. In the present study, we used p53 antibodies that
bind to a phosphorylated form of the protein that is induced
correspond to a feature-based representation of the “organizegbn radiation exposure. The significance of this study is that
and “disorganized” state of the colony in the database. TGFg is extracellular while p53 is intracellular.
Confocal microscopy is used to collect the distribution
. . of p53 immunoeactivity. Segmentation technique of section
B. Tissue studies IV, based on DAPI immunofluorescence, provides a discrete
One of the most rapid cellular responses to low-dosegion of interest for p53 localization. Nuclear features such
radiation is the activation of the transcription factor p53 (as shape, size, volume, relative location and intensity along
DNA repair molecule), whose abundance and action dictateth organization of the tissue are computed and stored in
individual cellular consequences regarding proliferation, dithe database. These features are then used to track the level
ferentiation, and apoptosis. Described as the guardian of @red distribution of p53 within specific tissue compartments.
genome by Science in 1995, p53 is one of the most ragikrhaps as important as immueactive positive cells are
cellular responses to radiation. Activation of p53 allows it taegative cells, especially if they are restricted to certain
bind to DNA and to transactivate target genes. A major cellulaellular phenotypes indicating a failure to respond to radiation
function of the p53 tumor suppressor protein is its role idamage. The first result is shown in Figure 12, where BioSig
promoting genome integrity. Whereastracellular radiation- provides a visual representation of p53 expression in three
induced mediators of p53 stability have been the subject cdtegories of nuclei (red for lumenal epithelial, cyan for myo-
intense study, little is known about thextracellular factors epithelial, and blue for stromal cells) for a population of 54
that affect the p53 response to ionizing radiation. A numbenages corresponding to wild type tissue sections. The plot
of striking similarities exist between p53 and T@&Fboth provides simple visualization of a population of cells and how
regulate complex cellular decisions regarding cell fate [21953 is expressed in each cell type for all images.

Fig. 9. Experimental protocol fan vitro treatment of a colony.
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Next an experiment was designed to study the impact of
TGF3 on the p53 as a result of an external exposure and
different strands of mice (genetically altered). Normal mice
(control animals) were exposed to low-dose radiation, tissues
were collected, samples were treated with appropriate antibod-
ies, and a large number of images were produced. Genetically
altered mice, with only one copy of TGF(as opposed to
two), were also externally exposed, etc. The protocol was
repeated without any external exposure on both strands of
mice. The experiment produced several thousand images that
were archived in the database along with their annotations.
Algorithms described in section IV were applied to these
images, cells were detected and classified, and their expression
was computed. The results indicate that p53, in the range
where signal is being observed, is expressed less in genetically
altered mice, thus, a link between extracellular condition and
intracellular event is made. BioSig maps image contents to
specific population response from unstructured data, allows
operators to manipulate the database to retrieve a particular
view of the data, and enables simple visualization of these
data for population studies.

VI. CONCLUSION

In the post-genome-sequencing era, quantitative imaging of
complex biological materials is a critical problem. Currently,
sequential measurements obtained with different microscopy
techniques preclude detailed analysis of multidimensional re-
sponses (e.g., time andage). Quantification of spatial and
temporal concurrent behavior of multiple markers in large
populations of multicellular aggregates is hampered by labor-
intensive methods, a lack of quantitative tools, and the inability
to index information. Ideally one would track the kinetics and

10

@)

(b)

quantities of myltiple target .proteins, t_heir C.e”mar ?Omexﬁ-'vig. 12. Population studies for p53: (a) segmentation and classification of
and morphological features in three dimensions using larg@roup of cells around lumen (yellow: lumenal-epithelial cells, green: myo-

populations. The BioSig informatics approach to microscoqyithelial cells, and white: stromal cells); (b) probability density functions
) r response of p53 in each cell type (red: lumenal-epithelial, green: myo-

and quantitative image analysis has been used to build a M@§ghejial, biue: stromal).

detailed picture of the signaling that occurs between cells, as
a result of an exogenous stimulus such as radiation, or as
a consequence of endogenous programs leading to biological
functions. 7]
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